07282016Thu
Last updateWed, 27 Jul 2016 7pm

i

Basics of Elastomeric Seal Design

Basics of Elastomeric Seal Design

Engineers need critical design informati...

Wastewater Treatment

Wastewater Treatment

Society’s desire for a clean envir...

Controlling Our Water Systems, Part II

Controlling Our Water Systems, Part II

To better understand the actuators and c...

Controlling Our Water Systems

Controlling Our Water Systems

Actuators and controls are a critical pr...

The Weekly Report

New Products

  • ja-news-2
  • ja-news-3

Industry Headlines

Advertisement
i

Industry Headlines

ValvTechnologies Names Bryant Holt Industry Director, Fossil Power

13 HOURS AGO
ValvTechnologies Names Bryant Holt Industry Director, Fossil Power

ValvTechnologies, Inc. has appointed Bryant Holt as industry director for the company’s fossil power division. Holt will succeed George Stover, who has served in this role since 2014.

Based in Houston, Holt will have global management responsibility for ValvTechnologies’ fossil power group ...

Readmore

Crane Co. Reports Second Quarter 2016 Results

1 DAY AGO

Crane Co. reported second quarter 2016 GAAP earnings of $1.15 per diluted share, compared to $0.95 per share in the second quarter of 2015. Excluding Special Items, second quarter 2016 earnings per diluted share were $1.21, compared to $1.06 per share in the second quarter of 2015.

Second quarter 2016 ...

Readmore

LNG’s Surge from Decade-Low Seen Fizzling as Supply Ramps Up

16 HOURS AGO

“LNG’s surge is running out of gas. Liquefied natural gas in Asia, which was in such over-supply that prices in Japan fell to a decade-low in April, has risen by almost half in the past three months as production outages stifled supply, demand rose in places like China and India and a co...

Readmore

Chemical Activity Barometer Grows for Fourth Consecutive Month

1 DAY AGO

The Chemical Activity Barometer (CAB) expanded 0.4% in July following a revised 0.7% increase in June, 0.8% increase in May and 0.6% increase in April. All data is measured on a three-month moving average. Accounting for adjustments, the CAB remains up 2.6% over this time last year, an improvement ove...

Readmore

U.S. Durable Goods Orders Down 4% in June

18 HOURS AGO

New orders for manufactured durable goods in June decreased $9.3 billion or 4.0% to $219.8 billion, the U.S. Department of Commerce announced. This decrease , down two consecutive months, followed a 2.8% May decrease. Excluding transportation, new orders decreased 0.5%. Excluding defense, new orders d...

Readmore

Sharpest Rise in U.S. Manufacturing Production Since November

2 DAYS AGO

July data signaled a further rebound in business conditions across the U.S. manufacturing sector, led by a robust expansion of incoming new work and the fastest upturn in production volumes for eight months. Job creation also strengthened in July, with the latest increase in payroll numbers the fast...

Readmore

Common Bellows Failures and Suggestions for Mitigation

vmwnt12_MR_Fig1Figure 1. Galling on the stem due to an oversized valve or operating the PRV too close to set pressure.

While it is an extremely rare event, bellows can and do fail. But bellows failures are often wrongly attributed to the quality of the valve or the bellows while in reality, a more likely scenario is operating conditions or an improperly specified valve that contributed to the failure. Still, whenever a failure occurs, analysis of what happened and why is critical.


THE USE OF BELLOWS

A spring-loaded pressure relief valve (PRV) is a device that reacts based on the amount of static pressure force pushing up on the disc. In normal processing conditions, the valve will remain shut because the upward force on the disc is less than the closing spring force. When the force from the process fluid pushing up and the force of the spring pushing down are at equilibrium, the disc of the valve will begin to lift from the nozzle, and the valve will begin to “simmer.” At this point, a slight increase in process pressure will cause that valve to “pop” open (its set point), thereby relieving the overpressure.

vmwnt12_MR_Fig2Figure 2. Bellows rupture likely because of excessive backpressure.A bellows is typically specified for applications when a spring-loaded PRV will experience backpressure (which can impact the valve’s ability to open at the correct set pressure) or when the internal components of the valve must be isolated from the processing fluid. When selecting the bellows material, consideration of the process material discharging into a common header must be made.

While it is possible for a bellows to fail because of an imperfection in fabrication, failure more commonly can be attributed to the wrong valves being used or operating conditions. Quality control during PRV assembly can prevent a customer from experiencing this type of failure.

Listed below are four scenarios that are common reasons a bellows might fail. Each assumes that a thorough review of the engineering sizing and specifications for a given PRV has been completed since these calculations will aid in diagnosing the problem.


EXCESSIVE BACKPRESSURE

One clue that indicates a valve has been exposed to excessive backpressure is when the bellows has been crushed. There are two types of backpressure in process systems: constant and variable. Variable can be further divided into two subgroups: superimposed and built-up.

Built-up backpressure is defined as the pressure at the outlet of the PRV based on the discharge piping configuration, i.e., pressure that occurs only after the valve has opened. For applications where the flow is compressible, built-up backpressure is based on the piping hydraulics at the accumulation pressure using the maximum actual capacity for the PRV. All too often engineers perform this calculation at the required capacity for the given scenario, not at the device’s actual capacity.

When a bellows failure can be attributed to excessive built-up backpressure, the following options will ­mitigate the problem:

  • Use a bellows with a higher pressure limit.
  • Use a pilot valve balanced against backpressure.
  • Modify the outlet piping by ­making it larger or shortening the length of pipe, thereby ­reducing the effects of built-up backpressure.


OVERSIZED VALVE

While most PRVs are protecting equipment for more than one relief event, the size of the valve is based on the scenario requiring the greatest relieving capacity. An example would be when a PRV is sized for both fire and blocked outlet scenarios. The fire sizing requires significantly greater orifice area than the blocked outlet sizing. However, since the blocked outlet scenario is more common and more likely to occur, then the PRV will be potentially starved for capacity, causing the valve to “chatter” (rapidly opening and closing). Valve chatter, as well as flow instability, could inevitably cause valve damage such as premature fatigue failure of the bellows, as well as galling of guiding surfaces. In our experience, a PRV should not be specified that has an actual orifice area more than 3 to 5 times larger than the required area.

Mitigation strategies for failure in this scenario include:

  • Install multiple PRVs and stagger the set pressure for each of the scenarios. Ensure the small valve is properly sized based on the lowest required capacity relief scenario.
  • Install a modulating pilot-operated relief valve.

  • Latest Post

  • Popular

  • Links

  • Events

Advertisement

Looking for a career in the Valve Industry?

ValveCareers Horiz

To learn more, watch the videos below or visit ValveCareers.com a special initiative of the Valve Manufacturers Association