09262017Tue
Last updateMon, 25 Sep 2017 6pm

i

Carbon Capture and Storage: Why and How?

Carbon Capture and Storage: Why and How?

Carbon (CO 2 ) capture and storage (CCS) i...

Can Valves Mitigate Flooding from Severe Weather Events

Can Valves Mitigate Flooding from Severe Weather Events

Hurricanes Harvey and Irma have certainl...

Machine Learning: A Brave New World

Machine Learning: A Brave New World

Whether you embrace it as a way to more ...

The Road to Valve Knowledge

The Road to Valve Knowledge

Valve expertise is a journey, not a dest...

Subscribe SUM17

FREE SUBSCRIPTION*

•  Print magazine
•  Digital magazine
•  VALVE eNews
Read the latest issue

*to qualified valve professionals in the U.S./Canada

The Weekly Report

New Products

  • ja-news-2
  • ja-news-3

Industry Headlines

Permian ‘Super Basin’ Holds Trillions in Untapped Oil

Monday, 25 September 2017  |  Chris Guy

Energy researchers at IHS Markit have completed the first, three-year phase of a massive Permian Basin research project that models and interprets the...

Readmore

Loading...
Advertisement
i

Industry Headlines

Flowserve Appoints Lee Eckert as CFO

14 HOURS AGO

Flowserve has named Lee Eckert as senior vice president and chief financial officer (CFO), effective October 9, 2017. Eckert joins Flowserve from CHC Group LLC., a global commercial helicopter service provider to the offshore oil and gas industry, where he served as senior vice president and CFO since...

Readmore

Velan Announces New Sales Structure

4 DAYS AGO

Velan is re-designing its sales structure to be better aligned with customers’ market approach. This change is intended to focus Velan’s resources on maximizing impact and competitiveness in today’s challenging economy.

Paul Dion has been appointed as vice-president of sales, process ...

Readmore

Permian ‘Super Basin’ Holds Trillions in Untapped Oil

8 HOURS AGO

Energy researchers at IHS Markit have completed the first, three-year phase of a massive Permian Basin research project that models and interprets the giant basin’s key geologic characteristics to better estimate its remaining hydrocarbon potential, and initial results indicate the giant basin ...

Readmore

DowDuPont Opens New Ethylene and Plastics Plant in Texas

10 HOURS AGO

DowDuPont Materials Science announced the startup of its new integrated world-scale ethylene production facility and its new ELITE enhanced polyethylene production facility, both in Freeport, TX. Both units will continue to ramp up through the third quarter and are expected to reach full rates in the ...

Readmore

U.S. Manufacturers Seeking More Renewable Energy

4 DAYS AGO

A new report from David Gardiner and Associates finds that 83% of the largest manufacturing companies with a U.S. footprint have established greenhouse gas reduction targets and 25% of manufacturers have established renewable energy targets. The analysis also finds that enabling access to renewable en...

Readmore

Harvey Caused Steep Drop in U.S. Industrial Output

7 DAYS AGO

Industrial production declined 0.9% in August following six consecutive monthly gains. Hurricane Harvey is estimated to have reduced the rate of change in total output by roughly 0.75%. The index for manufacturing decreased 0.3%; storm-related effects appear to have reduced the rate of change in facto...

Readmore

Checking Metal Materials With a Magnet

materials_q_and_a_graphicQ: I’ve seen people checking metal materials with a magnet. Is this a useful method of sorting materials, and if so, how does it work?

A: Valve companies deal with a large number of pure metals and alloys due to the variety of applications in the process industry. Occasionally, alloy identification must be performed on parts due to customer inquiries, mix-ups in bar stock, questionable machining characteristics or for some other reason. Although positive material identification (PMI) has become quite common, a PMI tester is not always available in a timely manner. One common identification/sorting technique that is often overlooked—and sometimes misapplied—is magnetic inspection. Magnetic inspection can save a lot of time by quickly proving a material is not what it is supposed to be.

Categorizing Materials by Magnetic Attraction

Magnetic inspection refers to categorization of a material by observation of its magnetic attraction force. Various alloy groups behave differently when exposed to a magnet. However, virtually all alloys fall into one of four behavior categories:

  • F - Fully magnetic:Materials such as carbon steels, alloy steels.
  • N - Never magnetic: Materials such as aluminum alloys, copper alloys, most nickel-base alloys, some stainless steels, etc. These materials exhibit no perceptible attraction to a magnet.
  • P - Partly magnetic: Materials such as some stainless-steel castings and wrought products. These materials exhibit some attraction to a magnet, but less than the fully magnetic materials.
  • V - Varying:Materials such as some stainless steels, nickel-copper alloys, etc. These materials may or may not be attracted to a magnet, and when attracted to a magnet, the attraction strength may vary significantly, depending upon the exact composition and processing history.

Information on magnetic characteristics can usually be found in material product literature.

An unknown material’s magnetic characteristic is determined by placing a magnet against the material and observing whether it is attracted or not. If there is no perceptible attraction, the material falls into category “N”. If there is attraction, decide whether it is full or partial. This is best done by placing the magnet against the unknown material and then bringing a piece of carbon steel into contact with the opposite end of the magnet. If the carbon steel easily removes the magnet from the unknown material, then the unknown falls into category “P”. If the magnet is attracted with approximately equivalent force by both materials, then the unknown falls into category “F”. In performing this comparative test, it is important that the surface contour and finish of the unknown piece and the carbon steel piece be the same (preferably flat). It is also important that both parts are more massive than the magnet or, in the case of sheet materials, that both parts have approximately the same thickness.

Limitations of Magnetic Inspection

The most important thing to keep in mind regarding magnetic inspection is that, although it can prove that a part is not a particular material, it cannot prove that a part is a particular material.

Here are some example applications of magnetic inspection:

  • Example 1: Records have been lost for a valve shaft that has been stored for several years. It is assumed the shaft is probably either S17400 or S20910, since these are the standard materials of construction for this part. Magnetic inspection determines that the shaft is fully magnetic. S17400 is fully magnetic, whereas S20910 is never magnetic. Therefore, the shaft is not S20910, and may be S17400. It could also be some other fully magnetic material.
  • Example 2: A customer orders a “316” valve body, but upon receipt of the body finds that it is slightly magnetic. The customer calls and complains that he did not receive a “316” body as ordered, because he knows that 316 stainless steel is never supposed to be magnetic. The problem with this logic is that the body is not 316, but rather is a CF8M casting, the equivalent of 316 wrought material. The chemistry of the cast material is adjusted to intentionally produce a small percentage of “ferrite,” which is a magnetic phase. This renders the casting partly magnetic, and often leads to this type of confusion. This highlights the importance of accuracy in material designation and product form (cast, wrought, etc.) when using magnetic inspection.
  • Example 3: A casting is sent to inspection for a material check because the machine operator noticed its machining characteristics were unusual. The casting is supposed to be CW2M. Magnetic inspection may save a great deal of time vs. performing a PMI. The casting is found to be partly magnetic. This proves that the casting is not CW2M, which is never magnetic.
  • Example 4: Same situation as example 3. This time, the material is found to be non-magnetic. This does not mean that the material is CW2M. This is one of the most important limitations in magnetic inspection. Magnetic inspection can prove that a part is not a particular material, but it cannot prove that a part is a particular material. In this case the casting should be further evaluated by PMI or some other method to determine if it is CW2M or some other non-magnetic material.

Remember that magnetic inspection can be a valuable, time-saving technique, but if used improperly it can produce erroneous identification of materials.

  • Latest Post

  • Popular

  • Links

  • Events

Advertisement

Looking for a career in the Valve Industry?

ValveCareers Horiz

To learn more, watch the videos below or visit ValveCareers.com a special initiative of the Valve Manufacturers Association