07292016Fri
Last updateFri, 29 Jul 2016 2pm

i

Basics of Elastomeric Seal Design

Basics of Elastomeric Seal Design

Engineers need critical design informati...

Wastewater Treatment

Wastewater Treatment

Society’s desire for a clean envir...

Controlling Our Water Systems, Part II

Controlling Our Water Systems, Part II

To better understand the actuators and c...

Controlling Our Water Systems

Controlling Our Water Systems

Actuators and controls are a critical pr...

The Weekly Report

New Products

  • ja-news-2
  • ja-news-3

Industry Headlines

Advertisement
i

Industry Headlines

Pentair Reports Second Quarter 2016 Results

16 HOURS AGO

Pentair plc announced second quarter 2016 sales of $1.7B. Sales were up 4% compared to sales for the same period last year. Excluding the unfavorable impact of currency translation and the positive contribution from acquisitions, core sales declined 3% in the second quarter . Second quarter 2016 earni...

Readmore

ValvTechnologies Names Bryant Holt Industry Director, Fossil Power

1 DAY AGO
ValvTechnologies Names Bryant Holt Industry Director, Fossil Power

ValvTechnologies, Inc. has appointed Bryant Holt as industry director for the company’s fossil power division. Holt will succeed George Stover, who has served in this role since 2014.

Based in Houston, Holt will have global management responsibility for ValvTechnologies’ fossil power group ...

Readmore

ExxonMobil Expanding Beaumont, TX Facility

20 HOURS AGO

ExxonMobil has plans to increase production of ultra-low sulfur fuels at its Beaumont, TX refinery by approximately 40,000 barrels per day, representing an investment of approximately $450 million.

Construction is scheduled during the second half of 2016 to install a selective cat naphtha hydrofining u...

Readmore

LNG’s Surge from Decade-Low Seen Fizzling as Supply Ramps Up

1 DAY AGO

“LNG’s surge is running out of gas. Liquefied natural gas in Asia, which was in such over-supply that prices in Japan fell to a decade-low in April, has risen by almost half in the past three months as production outages stifled supply, demand rose in places like China and India and a co...

Readmore

Second Quarter GDP Grew Only 1.2% in Second Quarter

-1 DAYS AGO

Real GDP in the U.S. increased at an annual rate of 1.2% in the second quarter of 2016, according to the advance estimate released by the U.S. Department of Commerce. In the first quarter, real GDP increased 0.8%.

The increase in real GDP in the second quarter reflected positive contributions from cons...

Readmore

U.S. Durable Goods Orders Down 4% in June

1 DAY AGO

New orders for manufactured durable goods in June decreased $9.3 billion or 4.0% to $219.8 billion, the U.S. Department of Commerce announced. This decrease , down two consecutive months, followed a 2.8% May decrease. Excluding transportation, new orders decreased 0.5%. Excluding defense, new orders d...

Readmore

Specifying Valves for Hydrogen Service

materials_q_and_a_graphicQ: When specifying valves for hydrogen service, what are some of the material considerations I should keep in mind?

A: Hydrogen can cause a number of different adverse effects in metallic materials. The specific problems that can occur, and the methods for avoiding them, depend upon the service conditions. Although the subject is much too vast to cover completely in this column, following are descriptions of the predominant hydrogen damage mechanisms, along with some suggestions for avoiding problems.

Hydrogen Embrittlement
Hydrogen embrittlement, also called hydrogen stress cracking or hydrogen induced cracking, is a condition of low ductility in metals resulting from the absorption of hydrogen. Hydrogen embrittlement is mainly a problem in steels with ultimate tensile strength greater than 90 ksi, although a number of additional alloys are susceptible. Most hydrogen embrittlement failures occur as a result of absorption of hydrogen that is generated during plating, pickling, or cleaning operations. However, hydrogen charging may also occur in-service. This usually occurs in cases where hydrogen is generated due to corrosion, although it can also occur in high-temperature hydrogen applications. Hydrogen embrittlement failures are most often characterized as delayed, catastrophic failures occurring at temperatures near ambient, at stresses below the yield strength, and exhibiting single, non-branching cracks. However, failures deviating from these characteristics can and do occur.

The hydrogen embrittlement phenomenon requires a source of hydrogen ions (H+) or monatomic hydrogen (H). Diatomic (molecular) hydrogen (H2) will not cause hydrogen embrittlement, because the H2 molecules are too large to diffuse into the metallic crystal structure.

Hydrogen ions are created during any electrolytic or aqueous corrosion process, including general corrosion, galvanic corrosion, pitting corrosion, electrocleaning, electropolishing, pickling, and electroplating processes.

Monatomic hydrogen (H) is formed by dissociation of diatomic hydrogen (H2) at high temperatures. Reportedly, this dissociation begins to occur at around 350°F(175°C), with the proportion of H/H2 increasing as temperature increases.

It should be mentioned that although hydrogen embrittlement is most likely to occur at ambient temperatures, ambient-temperature failure may occur in a material that was "charged" with hydrogen during exposure at elevated temperature.

Since sulfide stress cracking is essentially hydrogen embrittlement catalyzed by the presence of sulfide ions, NACE MR0175/ISO 15156, Petroleum and Natural Gas Industries - Materials for Use in H2S-containing Environments in Oil and Gas Production, and/or NACE MR0103, Materials Resistant to Sulfide Stress Cracking in Corrosive Petroleum Refining Environments, can be used as guidelines for general materials selection to avoid hydrogen embrittlement. However, the requirements in these standards are somewhat conservative for avoidance of conventional hydrogen embrittlement. In general, steels below approximately 35 HRC are generally acceptable for applications where conventional hydrogen embrittlement is a concern, whereas the NACE standards would require steels to meet a 22 HRC maximum hardness requirement. Austenitic stainless steels, most nickel and copper alloys, and aluminum alloys are generally resistant to hydrogen embrittlement, although certain precipitation-hardened and/or strain-hardened grades in these material families can suffer hydrogen embrittlement.

Hydrogen Attack
When carbon and low-alloy steels are exposed to high-pressure, high-temperature hydrogen, the monatomic hydrogen can diffuse into the steel and combine with the carbon in the steel to form methane gas, which becomes trapped at grain boundaries and other discontinuities in the material. The resulting internal decarburization and grain boundary fissuring degrades the mechanical properties of the material. Resistance to hydrogen attack increases with increasing chromium and molybdenum levels, since these elements form more stable carbides than iron, and do not release the carbon to the hydrogen as readily. API-recommended Practice 941, Steels for Hydrogen Service at Elevated Temperatures and Pressure in Petroleum Refineries and Petrochemical Plants, includes a diagram (commonly called a Nelson curve), which shows zones where the carbon and alloy steel materials are acceptable as a function of hydrogen partial pressure and temperature.

Hydrogen Blistering
Hydrogen blistering is the formation of blisters containing hydrogen gas in steels. This occurs when monatomic hydrogen (H) diffuses through the steel and recombines into molecular hydrogen (H2) at internal defects such as voids, laminations, and non-metallic inclusions. Molecular hydrogen cannot diffuse back out through steel, so the gradual buildup of molecular hydrogen results in increased pressure inside the defect cavities, eventually causing blistering of the material. Killed steels often are specified for elevated-temperature hydrogen applications or for applications where it is known that ionic hydrogen is generated. Killed steels are steels treated with a strong deoxidizing agent such as silicon or aluminum in order to reduce the oxygen content in the molten ingot, which in turn reduces the level of gas porosity in the finished steel. Killed steels are more resistant to hydrogen blistering than non-killed steels due to their relative lack of internal voids. The term "killed" actually only pertains to wrought products; however, cast steels are also deoxidized with elements such as silicon or aluminum to prevent the formation of gas porosity.

  • Latest Post

  • Popular

  • Links

  • Events

Advertisement

Looking for a career in the Valve Industry?

ValveCareers Horiz

To learn more, watch the videos below or visit ValveCareers.com a special initiative of the Valve Manufacturers Association