02192018Mon
Last updateMon, 19 Feb 2018 3pm

i

Achieving Predictable Valve Performance for Safety Applications

Achieving Predictable Valve Performance for Safety Applications

A focus on having the proper specificati...

Putting Servo Valves Back to Work

Putting Servo Valves Back to Work

Industries as varied as paper production...

Corrosion and Fouling: Is There a Solution?

Corrosion and Fouling: Is There a Solution?

According to a 1998 study released by the ...

Valves with All the Trimmings

Valves with All the Trimmings

The term valve trim has been around for ...

SubscribeWNT18

FREE SUBSCRIPTION*

• Print magazine
Digital magazine
• VALVE eNews
Read the latest issue

*to qualified valve professionals in the U.S./Canada

The Weekly Report

New Products

  • ja-news-2
  • ja-news-3

Industry Headlines

Philly Fed: Manufacturing Activity Expanded Solidly

Monday, 19 February 2018  |  Chris Guy

The index for manufacturing activity in the Philadelphia Federal Reserve region increased 4 points in February to a reading of 25.8. The index has sta...

Readmore

Loading...
Advertisement
i

Web Only

Valve Positioners Offer Improved Control Valve Performance

Valve Positioners Offer Improved Control Valve Performance

Monday, 19 February 2018  |  David Matherly

From time to time, we are re-posting well-received or particularly valuable articles that have previously run on VALVEMagazine.com so that those who m...

Readmore

Loading...

Industry Headlines

ValvTechnologies ITC 2018 Recap

2 DAYS AGO

The biennial ValvTechnologies’ International Technical Conference and Users Group (ITC) was held on February 8-9 in Houston. Seeking to educate, inspire and engage attendees over a two-day period, the event brought together hundreds of attendees from across the globe to share valuable insight ...

Readmore

Matthew Davis Named Field Service Manager at Weir

3 DAYS AGO

Weir Valves & Controls USA (WVC USA) has appointed Matthew Davis to the position of field service manager. In his new role, Davis will be responsible for managing the WVC USA Field Service crew and organizing WVC Service jobs for power plants worldwide.

Davis joins WVC USA with over 20 years of ex...

Readmore

TransCanada Turns Attention to Natural Gas System

3 DAYS AGO

TransCanada Corp. will move forward with a $1.9 billion expansion of its NGTL System to connect incremental supply and expand basin export capacity by one billion cubic feet of natural gas per day at the interconnection with its Canadian Mainline. NGTL expects to begin construction in 2019.

The increme...

Readmore

U.S. Oil Output Surge Reminiscent of Run-Up to 2014 Dive

4 DAYS AGO

According to the International Energy Agency (IEA), fast rising production in non-OPEC countries, led by the U.S., is likely to grow by more than demand in 2018. For now, the upward momentum that drove the price of Brent crude oil to $70/bbl has stalled; partly due to investors taking profits, but a...

Readmore

Philly Fed: Manufacturing Activity Expanded Solidly

-1 DAYS AGO

The index for manufacturing activity in the Philadelphia Federal Reserve region increased 4 points in February to a reading of 25.8. The index has stayed within a relatively narrow range over the past nine months. Nearly 41% of the firms indicated increases in activity this month, while 15% reported...

Readmore

U.S. Industrial Production Fell 0.1% in January

2 DAYS AGO

Industrial production edged down 0.1% in January following four consecutive monthly increases. At 107.2% of its 2012 average, total industrial production was 3.7% higher in January than it was a year earlier.

Manufacturing output was unchanged in January for a second consecutive month; the index has i...

Readmore

Advertisement

A Primer On Worm Gear Operators

vmsum12_worm_gears_1A remote gas pipeline installation in Pinedale, WyomingManual gear operators continue to provide a viable, age-old solution with a few 21st century twists. Understanding how these products work, as well as the tradeoffs and costs associated with manual operators, can help end users select the right technology for the application.

Over the past 30 years, valve automation has dominated the flow control industry. But even though power actuation captivates the attention, imagination and the lion’s share of growth in the market, manual valve actuation also continues to expand, receiving its own innovations. In this article, we provide an introduction to the basic principles behind these workhorse operators and discuss current trends in the market. We also consider the benefits and associated costs that come with manual worm gear designs. Please note that for ease of reference, a glossary of terms has been added; the definitions provided are industry specific and only intended to cover the depth and scope of this article (click here).


THE RANGE

Manual worm gear operators can be found in nearly every valve application throughout the world. Manual operators have no power requirements, no hydraulic or pneumatic pressure unit to maintain and can be used in the most remote locations. From submarine duty to mining, water works to oil and gas pipelines, if torque is required, manual worm gear operators are there.

To begin, it may help to view the world through the eyes of the application engineer. We push up our stylish horn rim glasses, open our 20-tab spreadsheet product selector and ask: “Torque or thrust?” The first consideration in selecting an actuator is the type of force required. Torque, that rotational or twisting force necessary to position ball valves, plug valves, butterfly valves, etc., will be the focus of this article.

Let’s look at the fundamental challenge our application engineer faces, which is: “How do we provide a means to safely and effectively position the valve?”

vmsum12_worm_gears_2Figure 1. A simple lever can work when just a small amount of torque is needed.If the valve torque is small enough, a wrench or lever of adequate length or a handwheel of the appropriate diameter provide simple solutions to our dilemma (Figure 1). Both the handwheel and the lever increase mechanical advantage by applying principles explained by Archimedes more than 2,000 years ago. Levers, while efficient and cost-effective, remain impractical or undesirable for many applications, however. At some point, the force required to position the valve exceeds the feasibility of a simple lever; this is where worm gear operators enter the picture.

We have used gears for thousands of years to harness energy from wind, water and beasts. Think of gear mechanisms as a series of interacting levers and screws. In our application, gears are used to amplify torque. In short, we use gears to convert force to work.


THE MECHANISM

vmsum12_worm_gears_3Figure 2. A simple cylindrical single-start worm and worm gear set.Worm gear operators are used for actuation because they offer high torque multiplication and load-carrying capability in a small, low-cost package. Figure 2 presents an example of a typical worm gear set found in a manual worm gear operator.

Following conventional American Gear Manufacturers Association (AGMA) (www.agma.org) gear design standards, if a single-start worm is the drive and an 80-tooth worm gear is the driven, the ratio would be expressed as 1:80 (the formula is available in the glossary). That’s a lot of ratio in a small package. But these numbers only tell us that it takes 80 worm revolutions (drive) to complete one revolution of the worm gear (driven). The ratio tells us about the mechanism’s effect on speed but little about torque. To understand the effect on torque, we need to know the mechanical advantage (MA). In a perfect machine, a 1:80 ratio would net an MA of 1:80 (expressed as 80), meaning that for 1 unit of force applied, 80 units of force are generated.

Does this mean free torque? Unfortunately, no. The energy of the universe is constant and as with everything, there is an associated cost.


THE COSTS

What are the costs associated with amplifying force through our manual actuator? The first cost is hard cash—the worm gear actuator will cost more than a lever or handwheel.

Second, machines are not perfect, which is demonstrated in efficiency losses through heat and wear. As it turns out, standard single-start metal worm gear sets are less than 35% efficient by design. Also, worm gear sets with a worm thread angle and design, which net an efficiency of approximately 35% and greater, are not typically self-locking, and without self-locking characteristics are not suitable for a number of applications. Based on a website sample of the top manufacturers, 32% is the approximate average efficiency for manual worm gear operators. This simple formula explains what happens to mechanical advantage in a 32% efficient gear train:

80 x .32 = 25.6 MA

The MA would be approximately 25, not 80. That is nearly 55 points of mechanical advantage lost to ­inefficiency.

Third, and not captured in manufacturer’s data sheets, is the cost in the exchange of force for distance. We increase force by simply making more trips, or more specifically, more turns on the handwheel to cycle the valve.

  • Latest Post

  • Popular

  • Links

  • Events

Advertisement
BUYERS GUIDE 300x220

Looking for a career in the Valve Industry?

ValveCareers Horiz

To learn more, watch the videos below or visit ValveCareers.com a special initiative of the Valve Manufacturers Association