02082016Mon
Last updateMon, 08 Feb 2016 7pm

i

Introduction to Pressure Relief Devices - Part 1

Introduction to Pressure Relief Devices - Part 1

When the pressure inside equipment such ...

Is Your Company Ready for The New Reality?

Is Your Company Ready for The New Reality?

Since August, 2015, when VMA’s 201...

Offshore Oil Extraction and Transportation

Offshore Oil Extraction and Transportation

Offshore oil facilities come to the fore...

SubscribeWNT16

Read the latest digital edition

Subscribe to the digital edition

Subscribe to the print edition

Subscribe to the biweekly VALVE eNews

BUYERS GUIDE 300x220

New Products

  • ja-news-2
  • ja-news-3

Industry Headlines

Advertisement
i

Industry Headlines

GE Oil & Gas and Diamond Offshore Enter Landmark Service Agreement

-1 DAYS AGO

GE Oil & Gas and Diamond Offshore Drilling, Inc. announced the offshore drilling industry’s first-of-its-kind contractual service agreement that transfers full accountability for BOP performance to GE Oil & Gas. Under this model, Diamond Offshore will compensate GE Oil & Gas only w...

Readmore

Watson Valve Announces Watson Valve Services, Australia

3 DAYS AGO

Watson Valve Services Inc. announces Watson Valve Services, Australia. Watson Valve will now have the ability to support the supply of its severe service valve products to non-U.S. domestic sites from its Australian based service agent, Process Plants International (PPi) under the name, Watson Valve...

Readmore

U.S. Oil Inventories Now at Record High

3 DAYS AGO

Several factors have played a part in pushing U.S. crude oil prices below $30 per barrel, including high inventory levels of crude oil, uncertainty about global economic growth, volatility in equity and non-energy commodity markets, and the potential for additional crude oil supply to enter the mark...

Readmore

FERC Approves $3.2B Sabal Trail Pipeline Project

3 DAYS AGO

Sabal Trail Transmission, LLC, a joint venture of Spectra Energy Partners, LP, NextEra Energy, Inc. and Duke Energy, received a certificate of public convenience and necessity from the Federal Energy Regulatory Commission (FERC) to construct and operate the Sabal Trail interstate natural gas pipelin...

Readmore

Labor Productivity Down More Than Expected in Fourth Quarter

3 HOURS AGO

U.S. labor productivity decreased at a 3.0-percent annual rate during the fourth quarter of 2015, the U.S. Bureau of Labor Statistics reported, as output increased 0.1% and hours worked increased 3.3%.

Manufacturing sector labor productivity decreased 0.4% in the fourth quarter of 2015, as output i...

Readmore

U.S. Adds 151,000 Jobs, Unemployment Rate Down to 4.9%

3 DAYS AGO

Total nonfarm payroll employment rose by 151,000 in January, and the unemployment rate dropped 0.1% to 4.9%, the lowest since Feb. 2008. Job gains occurred in several industries, led by retail trade, food services and drinking places, health care and manufacturing. Employment declined in private edu...

Readmore

A Primer On Worm Gear Operators

vmsum12_worm_gears_1A remote gas pipeline installation in Pinedale, WyomingManual gear operators continue to provide a viable, age-old solution with a few 21st century twists. Understanding how these products work, as well as the tradeoffs and costs associated with manual operators, can help end users select the right technology for the application.

Over the past 30 years, valve automation has dominated the flow control industry. But even though power actuation captivates the attention, imagination and the lion’s share of growth in the market, manual valve actuation also continues to expand, receiving its own innovations. In this article, we provide an introduction to the basic principles behind these workhorse operators and discuss current trends in the market. We also consider the benefits and associated costs that come with manual worm gear designs. Please note that for ease of reference, a glossary of terms has been added; the definitions provided are industry specific and only intended to cover the depth and scope of this article (click here).


THE RANGE

Manual worm gear operators can be found in nearly every valve application throughout the world. Manual operators have no power requirements, no hydraulic or pneumatic pressure unit to maintain and can be used in the most remote locations. From submarine duty to mining, water works to oil and gas pipelines, if torque is required, manual worm gear operators are there.

To begin, it may help to view the world through the eyes of the application engineer. We push up our stylish horn rim glasses, open our 20-tab spreadsheet product selector and ask: “Torque or thrust?” The first consideration in selecting an actuator is the type of force required. Torque, that rotational or twisting force necessary to position ball valves, plug valves, butterfly valves, etc., will be the focus of this article.

Let’s look at the fundamental challenge our application engineer faces, which is: “How do we provide a means to safely and effectively position the valve?”

vmsum12_worm_gears_2Figure 1. A simple lever can work when just a small amount of torque is needed.If the valve torque is small enough, a wrench or lever of adequate length or a handwheel of the appropriate diameter provide simple solutions to our dilemma (Figure 1). Both the handwheel and the lever increase mechanical advantage by applying principles explained by Archimedes more than 2,000 years ago. Levers, while efficient and cost-effective, remain impractical or undesirable for many applications, however. At some point, the force required to position the valve exceeds the feasibility of a simple lever; this is where worm gear operators enter the picture.

We have used gears for thousands of years to harness energy from wind, water and beasts. Think of gear mechanisms as a series of interacting levers and screws. In our application, gears are used to amplify torque. In short, we use gears to convert force to work.


THE MECHANISM

vmsum12_worm_gears_3Figure 2. A simple cylindrical single-start worm and worm gear set.Worm gear operators are used for actuation because they offer high torque multiplication and load-carrying capability in a small, low-cost package. Figure 2 presents an example of a typical worm gear set found in a manual worm gear operator.

Following conventional American Gear Manufacturers Association (AGMA) (www.agma.org) gear design standards, if a single-start worm is the drive and an 80-tooth worm gear is the driven, the ratio would be expressed as 1:80 (the formula is available in the glossary). That’s a lot of ratio in a small package. But these numbers only tell us that it takes 80 worm revolutions (drive) to complete one revolution of the worm gear (driven). The ratio tells us about the mechanism’s effect on speed but little about torque. To understand the effect on torque, we need to know the mechanical advantage (MA). In a perfect machine, a 1:80 ratio would net an MA of 1:80 (expressed as 80), meaning that for 1 unit of force applied, 80 units of force are generated.

Does this mean free torque? Unfortunately, no. The energy of the universe is constant and as with everything, there is an associated cost.


THE COSTS

What are the costs associated with amplifying force through our manual actuator? The first cost is hard cash—the worm gear actuator will cost more than a lever or handwheel.

Second, machines are not perfect, which is demonstrated in efficiency losses through heat and wear. As it turns out, standard single-start metal worm gear sets are less than 35% efficient by design. Also, worm gear sets with a worm thread angle and design, which net an efficiency of approximately 35% and greater, are not typically self-locking, and without self-locking characteristics are not suitable for a number of applications. Based on a website sample of the top manufacturers, 32% is the approximate average efficiency for manual worm gear operators. This simple formula explains what happens to mechanical advantage in a 32% efficient gear train:

80 x .32 = 25.6 MA

The MA would be approximately 25, not 80. That is nearly 55 points of mechanical advantage lost to ­inefficiency.

Third, and not captured in manufacturer’s data sheets, is the cost in the exchange of force for distance. We increase force by simply making more trips, or more specifically, more turns on the handwheel to cycle the valve.

Advertisement

  • Latest Post

  • Popular

  • Links

  • Events