Last updateTue, 25 Oct 2016 3pm


Warriors, Welding and Wooing the Workforce

Warriors, Welding and Wooing the Workforce

For the last several years, one of the b...

New Test Standards for Low-E Compliance

New Test Standards for Low-E Compliance

Creating practical, unified standards fo...

The Weekly Report

New Products

  • ja-news-2
  • ja-news-3

Industry Headlines


Industry Headlines

Train Named Executive President of Emerson Automation Solutions


Emerson recently named new senior leadership appointments to its Office of the Chief Executive who now report directly to chairman and CEO David N. Farr, and help develop and guide the company’s global strategies.

Michael H. Train’s new title is executive president of Emerson Automation Sol...


All-Pro Fasteners Receives Monogram Licensing


All-Pro Threaded Products, an All-Pro Fasteners company, received the official API Q1 registration and on September 23, 2016 become the second of only two within the industry to have obtained both the API 20E & 20F monogram licenses.

The American Petroleum Institute (API) has confirmed that All-Pro...


New 2017 Construction Starts Increasing 5% to $713 Billion


The 2017 Dodge Construction Outlook predicts that total U.S. construction starts for 2017 will advance 5% to $713 billion, following gains of 11% in 2015 and an estimated 1% in 2016.

Manufacturing plant construction will increase 6%, beginning to recover after steep declines in 2015 and 2016 that refle...


U.S. Natural Gas Production Gives Back August Gains in September


U.S. natural gas production levels in the lower 48 states declined by nearly 1.2% in September 2016 compared to August 2016 levels, according to analysis from IHS Markit. September’s decline drops year-to-date production levels 1% compared to the same period in 2015.

Overall, lower 48 U.S. dry ga...


Mid-Atlantic Manufacturing Activity Expands More Than Expected


Results from the Federal Reserve Bank of Philadelphia’s October Manufacturing Business Outlook Survey suggest that regional manufacturing conditions continued to improve. Indexes for general activity, new orders, and shipments were all positive this month. But firms in the Mid-Atlantic region re...


Fed’s Beige Book Points to Modest Economic Growth


Reports from the twelve Federal Reserve Districts suggest national economic activity continued to expand during the reporting period from late August to early October. Most Districts indicated a modest or moderate pace of expansion ; however, the New York District reported no change in overall activit...


Extreme Valve Testing

VM-smr11-cryogenic_testTwo commonly used low temperature tests today measure the degrees for liquid nitrogen and liquid natural gas.

Valves today face more challenging conditions from a wider range of applications. As a result, users are asking for more and better testing.

Filling a valve up with water, adding pressure and looking for leaks might work for some valve specifications, but many of today’s demanding valve requirements call for much more stringent testing and evaluation. Special service applications such as hazardous fluids, nuclear power plants, high-pressure pipelines and more dictate a much broader testing and inspection regimen than traditional simple tests.

Many users are requesting valve manufacturers prove their products will operate satisfactorily at the higher and lower temperatures and more extreme pressures that their valves are advertised to reach. These may be the lowest cryogenic temperatures or elevated temperatures close to 1000° F (538° C). Such tests call for specialized equipment and test procedures.

VM-smr11-cryogenic_test_2Cryogenic testing is generally performed at temperatures ranging between -50° F (-46° C) and -320° F (-196° C).The most common of these more extreme tests is cryogenic testing. Such testing is generally performed at temperatures ranging between -50° F (-46° C) and -320° F (-196° C)—most often at -320° F (-196° C), which is the temperature of liquid nitrogen (LN). Standard practice is for the valve to be immersed in the LN up to the packing gland area, if the valve is equipped that way. The packing must be kept out of the LN or it could freeze the packing, seizing the stem and causing the valve to lock up and fail to operate. Because polymer seals do not function well at cryogenic temperatures, valve end connections must be the type that makes a solid mechanical connection. These include threaded, flanged or caps welded onto buttweld-end ends. Socketweld-end and buttweld-end valves without welded-on caps are very difficult to test at the lowest cryogenic temperatures.

One of the most popular low temperature services today is liquid natural gas (LNG). Valves for LNG are sometimes tested at -320° F (-196° C), but a more accurate test is performed at the actual LNG temperature of -260° F (-162° C).

Cryogenic testing is costly and hazardous and should only be performed by experienced, trained personnel. The test procedures for cryogenics are available from several standards-making-organizations, as well as end users. The most significant differences in testing procedure documents are allowable leakage rates.



Pipeline safety has come to the forefront lately because of catastrophic pipeline failures. These failures have occurred primarily on older pipelines because quality requirements for new pipeline construction are very stringent. Valves for pipeline service are also scrutinized very closely. While all pipeline valves are hydrostatically tested at the factory, usually in accordance with API 6D, additional tests are almost always performed. The most common extreme test for pipeline valves is a long duration shell test, which is carefully monitored by a recording device tracking the pressure and the temperature of the valve as it is tested.

During these enhanced duration shell integrity tests, the pressure on the valve must be maintained, or the pressure drop must coincide with a proportional drop in temperature to avoid valve failure. It is not uncommon for test durations to run several hours long.


VM-smr11-preparing_for_fugitive_emissions_testA valve is prepared to undergo fugitive emissions tests.The desire to keep our nation’s air clean is manifested in the valve industry through the Clean Air Act and various state and local regulations. For manufacturers to meet today’s low emissions requirements, valves must be tested to determine their ability to contain these fugitive emissions (FE). FE testing is now a requirement by most refiners and chemical companies that must contain hazardous fluids as part of their everyday processes.

FE testing requires the valve be pressured up with an easily measurable gas such as methane or helium, and then checking the body and seals, particularly the packing, for leakage. An alternative method is to create a vacuum drawn on the valve through a closed piping system and introducing a tracer gas into the areas of the valve exterior susceptible to FE leakage.

Two distinct schools of thought exist on what gas should be used to FE test a valve—schools separated by the Atlantic Ocean. In Europe, it is deemed unsafe to test with methane, so all testing must be performed with helium; in the U.S., the preferred test media is methane, which more closely resembles the molecular structure of the volatile organic compounds (VOCs) that both industry and government are working hard to control.

  • Latest Post

  • Popular

  • Links

  • Events


Looking for a career in the Valve Industry?

ValveCareers Horiz

To learn more, watch the videos below or visit ValveCareers.com a special initiative of the Valve Manufacturers Association