02262017Sun
Last updateThu, 23 Feb 2017 7pm

i

Human Factors Can Cause a Disaster—or Prevent One

Human Factors Can Cause a Disaster—or Prevent One

Process industry plants are complex and ...

Improving Valve Sealing Performance and Reliability

Improving Valve Sealing Performance and Reliability

From time to time, we are re-posting wel...

A Primer on Fugitive Emissions

A Primer on Fugitive Emissions

Fourscore and seven years ago, no one ha...

The Weekly Report

New Products

  • ja-news-2
  • ja-news-3

Industry Headlines

Industry Headlines

Emerson Expanding Mississippi Facility

2 DAYS AGO

Emerson plans on delivering $500,000 in new equipment to its facility in Sherman, MS. Because of this investment , and its promise of new jobs for the region, the Sherman Economic Development Corp. has approved $150,000 in grants for Emerson.

"We have a relatively new Fisher product that will be reloca...

Readmore

REXA and CCC Form Joint Initiative

2 DAYS AGO

REXA and Compressor Controls Corporation (CCC) have formed a joint initiative to modernize steam turbine controls for enhanced performance based upon each company’s core competency.

There are more than 10,000 turbomachinery trains worldwide powered by CCC. By upgrading mechanical and hydraulic go...

Readmore

Chevron and Pembina Sign Deal to Build Pipelines, Other Facilities

2 DAYS AGO

Calgary-based Pembina Pipeline Corp. has signed a 20-year deal with Chevron to build natural gas pipelines and processing facilities for a potential production operation in northwest Edmonton, Alberta. The infrastructure developed over the term of this agreement has the potential to represent a multi-...

Readmore

U.S. in Midst of Biggest Drilling Surge Since 2012

2 DAYS AGO

“U.S. drillers pushed ahead on the biggest surge in oil drilling since 2012 as companies take advantage of oil prices that have held steady above $50 for almost three months,” Bloomberg reports .

“Drilling is booming in a few shale plays -- led by the Permian Basin in West Texas and Ne...

Readmore

U.S. Private Sector Growth Slows from January’s 14-Month Peak

2 DAYS AGO

At 54.3 in February, the seasonally adjusted Markit Flash U.S. Composite PMI Output Index dropped from 55.8 in January but remained above the 50.0 no-change value for the twelfth consecutive month. The latest reading signaled that private sector output growth moderated from the 14-month high recorded ...

Readmore

NAM Kicks Off Tour at Emerson Innovation Center in Austin

2 DAYS AGO

The National Association of Manufacturers (NAM) kicked off the 2017 State of Manufacturing Tour at Emerson Innovation Center in Austin, TX—a “hotbed of modern manufacturing.” The event is the first in a series of stops in six states throughout the next week, including a visit with Pr...

Readmore

Supplemental Requirement S23 in ASTM A703

materials_q_and_a_graphicQ: A customer has asked whether we can supply carbon and alloy steel valve bodies meeting Supplemental Requirement S23 in ASTM A703. What is the purpose of this requirement?

A: The macroetch test specified in Supplemental Requirement S23 in ASTM A703 is designed to detect the occurrence of aluminum nitride embrittlement in castings.

When steel is melted, oxygen and nitrogen can be dissolved in the molten steel. When the metal is poured into the casting mold, the oxygen can come out of the solution and form gas porosity in the castings. In order to avoid castings with excessive gas porosity, the foundry may add deoxidizing elements to the melt. The presence of these elements results in the formation of oxide compounds, which mitigates the formation of oxygen gas bubbles during solidification.

One of the elements that is sometimes added as a deoxidizer is aluminum, which creates a potential for the formation of aluminum nitride. This compound tends to precipitate in the prior austenite grain boundaries and can result in castings that display loss of ductility that could result in brittle failure of the casting if it is shock-loaded in service. If fracture occurs, it has a rock-candy appearance due to fracture along the prior austenite grain boundaries. The fracture is often very shiny due to the presence of aluminum nitride platelets on the surface.

Variables That Influence Embrittlement

There are a number of variables that influence the potential for this type of embrittlement:

1) The steel must contain enough aluminum and nitrogen to support the formation of enough aluminum nitride to cause a significant embrittling effect. Most foundries have the equipment necessary to analyze and report aluminum content. However, the specifications for the common cast steels used in valve bodies do not require analysis or reporting of aluminum as a standard requirement, so some foundries do not monitor and/or report the aluminum content.

Although some foundries monitor nitrogen levels in their steel, many do not have the necessary equipment to do this. The specifications for the common cast steels used in valve bodies do not require analysis or reporting of nitrogen as a standard requirement. Therefore, the nitrogen content of the steel is often not known or reported, and it is possible that enough nitrogen is present to form aluminum nitride.

2) Other elements that inhibit the formation of aluminum nitride must be present in low enough quantities that the reaction can occur. Certain elements are known to inhibit the formationof aluminum nitride. Additionsof titanium and/or zirconium, addedeither along with or after the additionof aluminum, can inhibit the formationof aluminum nitride by forming titaniumnitride and/or zirconium nitrideinstead. It has also been found thathigher levels of phosphorus, sulfur,boron, molybdenum and copper inhibitaluminum nitride embrittlement.

3) The cooling rate in the mold must be slow enough through the critical temperature range to allow the formation of the aluminum nitride phase. The thickness of the casting (orportion of the casting) is an obviousfactor influencing whether embrittlementoccurs, since thicker casting sectionswill cool more slowly through thecritical temperature range than thinsections.

The casting configuration can also influence the cooling rate. A complex casting with relatively thin walls may experience slower cooling rates than a simple casting with the same wall thickness because the complex casting will lose heat through the mold less effectively.

The mold material can also influence the cooling rate. For example, air-set sand is known to inherently produce molds that cool slower than green-sand molds.

Reporting Aluminum Content

When Supplemental Requirement 23 in ASTM A703 is imposed on steel castings produced under ASTM A216, A217 and A352, aluminum is required to be reported. For heats with aluminum content greater than 0.08%, a macroetch must be performed on one of the following:

  • A cross-section of the heaviest section of a sacrificial casting
  • A coupon attached to the heaviest section
  • A coupon removed from directly under a riser or
  • A coupon from the same heat of material removed from a separately cast test block with a thickness representative of the heaviest section of the casting.

The resulting etched specimen is compared with 10 reference macrographs. Heats with severity levels 4 and lower are acceptable. Heats exhibiting higher levels are dispositioned by a number of means, including examination of etch structures on individual castings, fracture testing to determine the degree of “rock candy” appearance, mechanical testing, weld crack susceptibility testing and/or high-temperature solution heat treatment, as agreed upon by the supplier and purchaser.


REFERENCES:

1. ASTM A703 (latest revision), “Steel Castings, General Requirements, for Pressure-Containing Parts,” ASTM International, West Conshohocken, PA.

2. ASM Materials Information On-Line: ASM Metals Handbook - Volume 1, Properties and Selection: Irons, Steels, and High Performance Alloys -> Embrittlement of Steels -> Embrittlement in Carbon Steels and Alloy Steels.

3. SFSA SFSA Casteel Reporter, August 2006, Page 2, Steel Founders’ Society of America, Crystal Lake, IL.

4. Banks, WC, “Avoiding Aluminum Nitride Embrittlement in Steel Castings for Valve Components,” V-Rep 84-1, Flowserve, 2003, Raleigh, NC.

  • Latest Post

  • Popular

  • Links

  • Events

Advertisement

Looking for a career in the Valve Industry?

ValveCareers Horiz

To learn more, watch the videos below or visit ValveCareers.com a special initiative of the Valve Manufacturers Association