04192018Thu
Last updateThu, 19 Apr 2018 4pm

i

Air Valves in Piping Systems

Air Valves in Piping Systems

Liquid piping systems are prone to colle...

Are Valves from Low-Cost Countries Getting Better?

Are Valves from Low-Cost Countries Getting Better?

The last 25 years have seen standards cr...

Managing the Generation Gap: Much Ado About Nothing?

Managing the Generation Gap: Much Ado About Nothing?

The baby boomer generation was the most ...

SubscribeSPR18

FREE SUBSCRIPTION*

• Print magazine
Digital magazine
• VALVE eNews
Read the latest issue

*to qualified valve professionals in the U.S./Canada

The Weekly Report

New Products

  • ja-news-2
  • ja-news-3

Industry Headlines

Emerson and BlueFin Form Strategic Partnership

Thursday, 19 April 2018  |  Chris Guy

Emerson and BlueFin have signed a working partnership agreement to deliver the Roxar gauge technology to the U.S. Gulf of Mexico (GoM) region. The part...

Readmore

Loading...
Advertisement
i

Industry Headlines

Emerson and BlueFin Form Strategic Partnership

2 HOURS AGO

Emerson and BlueFin have signed a working partnership agreement to deliver the Roxar gauge technology to the U.S. Gulf of Mexico (GoM) region. The partnership will deliver a combined offering of Emerson's technology coupled with BlueFin's installation services and chemical injection systems.

BlueFin, a...

Readmore

Flowserve Expands Partnership with Unisys

1 DAY AGO

Flowserve, a client of Unisys Corporation, will expand its use of the Unisys Stealth microsegmentation solution through a new agreement to implement the solution more broadly across the enterprise. Under the new agreement , Flowserve will increase the number of servers and endpoints protected by Steal...

Readmore

OECD Natural Gas Production Up 2.4% in 2017

3 HOURS AGO

An assessment of monthly data shows that in 2017 Organization for Economic Co-operation and Development (OECD) natural gas production grew by 2.4% compared to 2016. This growth was driven by increases in production across all OECD regions, particularly in Asia Oceania (+17.7%), whilst the Americas and...

Readmore

Major Trends Changing the Chemical Industry

2 DAYS AGO

“The accelerated globalization of the chemicals market is one of four major trends that we at SAP see shaping the chemical industry through the remainder of 2018 and beyond,” writes Stefan Guertzgen, global senior director for industry solution marketing, chemicals at SAP.

“Amid such ...

Readmore

Beige Book: Solid Outlook Despite Tariff Concerns

4 HOURS AGO

Economic activity continued to expand at a modest to moderate pace across the 12 Federal Reserve Districts in March and early April. Outlooks remained positive, but contacts in various sectors including manufacturing, agriculture and transportation expressed concern about the newly imposed and/or prop...

Readmore

IMF Predicting Global Economic Upswing

1 DAY AGO

World growth strengthened in 2017 to 3.8%, with a notable rebound in global trade. It was driven by an investment recovery in advanced economies, continued strong growth in emerging Asia, a notable upswing in emerging Europe, and signs of recovery in several commodity exporters. Global growth is exp...

Readmore

Advertisement

WCC and LCC Casting in ASME B16.34

materials_q_and_a_graphicQ: Why do WCC and LCC castings have different maximum allowable temperatures in ASME B16.34?

A: This is a very good question and a commonly discussed topic among materials engineers. Unfortunately, the answer isn't black and white-in fact, the "whys" are not very clear at all. What is clear is that the maximum allowable temperature values in B16.34 can be traced back to Section II Part D of the ASME Boiler and Pressure Vessel (B&PV) Code. However, that code contains no background information or notes to explain why those particular temperature limits were assigned. Because of this, much speculation among materials engineers exists- following along these lines:

The standard carbon steel materials (i.e., those not impact-tested for low-temperature applications, such as A216/SA216 WCC) are most commonly heat treated by normalizing, sometimes followed by tempering. Normalized steels are relatively resistant to microstructural changes at elevated temperatures. Short excursions to temperatures below the lower critical temperature (727° C /1340° F) have little or no detrimental effect on the mechanical properties of the steel. Long-term exposure at temperatures exceeding 425° C / 800° F, however, can cause graphitization, in which the carbide phase transforms to graphite causing loss of strength and toughness. WCC is actually allowed at temperatures up to 538° C / 1000° F, but B16.34 notes (as a borrowed reference from the B&PV Code) that "Upon prolonged exposure to temperatures above 455° C / 900° F, the carbide phase of steel may be converted to graphite. This means it may be permissible, but not recommended for prolonged use above 425° C / 800° F."

On the other hand, low-temperature carbon steel materials (i.e., those that are impact-tested for low-temperature applications, such as A352/SA352 LCC) are usually quenched and tempered, because they are generally tougher than normalized microstructures at the same strength level. When exposed to elevated temperatures, quenched and tempered steels are more susceptible than normalized steels to permanent reduction in strength. This is especially true when exposure temperature begins to approach tempering temperature used when the parts were produced. In addition to losing strength, tempered steels also may experience reduced impact toughness after being exposed to long-term elevated temperatures. General belief is that this is the reason for LCC's reduced maximum allowable temperature limit of 345°C / 650°F in B16.34.

Inconsistencies
Here's where inconsistencies start, however, because:

  • A216 / SA216 allows WCC to be supplied in the quenched and tempered condition if the purchaser v invokes Supplementary Requirement S15. A216 / SA216 does not explicitly require any special marking for quenching and tempering. (Interestingly, though, Supplementary Requirement S15 in A703/SA703, the "general requirements" specification referenced by A216 / SA216, stipulates a "QT" mark when the material is quenched and tempered). B16.34 (and the B&PV Code) do not place any special temperature limits on WCC when it is quenched and tempered.
  • In addition, impact tests are also allowed on a WCC casting at -46°C/-50°F to qualify it for low temperature service. This would then be a full-fledged WCC casting qualified for use down to -46°C/-50°F and minus the explicit 345°C/650°F maximum allowable temperature limit for LCC.
  • Furthermore, the B16.34 maximum allowable temperature for A350/SA350 LF2 forgings is 538°C/1000°F (with the same warning note about graphitization -not to use it above 425°C / 800°F). These forgings are also often quenched and tempered so they are essentially the nearest forged equivalent to LCC castings. If the metallurgical instability issues are the reason for the 345°C / 650°F maximum allowable temperature limit on LCC castings then, it would seem that LF2 forgings should also be limited to 345°C / 650°F.

Drawing Conclusions
Based on the above information, the following conclusions might be drawn:

  • If the reduced maximum allowable temperature for impact-qualified materials (such as LCC) are limited based on loss of toughness after long-term exposure to elevated temperatures, it would seem logical that additional, more consistent controls should be placed on all low-temperature materials (including LF2 forgings). These controls would need to extend to grades traditionally not impact tested, but that might be impact tested to qualify them for low temperature applications (such as an impact-tested WCC). In other words, maximum allowable temperature limit should be based on minimum allowable temperature.
  • If the reduced maximum allowable temperature is limited based on loss of strength from reduced elevated-temperature stability of quenched and tempered steels, it would make sense to list maximum allowable temperature limits for carbon steels as a function of both material grade and also heat treat condition. It would also make sense that quenched and tempered materials be marked in this case as well.
  • If both these concerns are driving the reduced maximum allowable temperature limits, then it would seem that the maximum temperature limits of all carbon steels should be based on both the minimum allowable temperature and the heat treat condition. In any event, it's clear that the ASME codes and standards currently contain a number of inconsistencies regarding lower temperature limits in carbon steels.

  • Latest Post

  • Popular

  • Links

  • Events

BUYERS GUIDE 300x220

Looking for a career in the Valve Industry?

ValveCareers Horiz

To learn more, watch the videos below or visit ValveCareers.com a special initiative of the Valve Manufacturers Association