02192018Mon
Last updateMon, 19 Feb 2018 7pm

i

Achieving Predictable Valve Performance for Safety Applications

Achieving Predictable Valve Performance for Safety Applications

A focus on having the proper specificati...

Putting Servo Valves Back to Work

Putting Servo Valves Back to Work

Industries as varied as paper production...

Corrosion and Fouling: Is There a Solution?

Corrosion and Fouling: Is There a Solution?

According to a 1998 study released by the ...

Valves with All the Trimmings

Valves with All the Trimmings

The term valve trim has been around for ...

SubscribeWNT18

FREE SUBSCRIPTION*

• Print magazine
Digital magazine
• VALVE eNews
Read the latest issue

*to qualified valve professionals in the U.S./Canada

The Weekly Report

New Products

  • ja-news-2
  • ja-news-3

Industry Headlines

Strong Momentum for M&A Activity in the Chemical Industry

Monday, 19 February 2018  |  Chris Guy

Global chemical mergers and acquisitions (M&A) activity in 2018 is expected to remain strong, as higher valuations continue to be mitigated by imp...

Readmore

Loading...
Advertisement
i

Web Only

Valve Positioners Offer Improved Control Valve Performance

Valve Positioners Offer Improved Control Valve Performance

Monday, 19 February 2018  |  David Matherly

From time to time, we are re-posting well-received or particularly valuable articles that have previously run on VALVEMagazine.com so that those who m...

Readmore

Loading...

Industry Headlines

ValvTechnologies ITC 2018 Recap

2 DAYS AGO

The biennial ValvTechnologies’ International Technical Conference and Users Group (ITC) was held on February 8-9 in Houston. Seeking to educate, inspire and engage attendees over a two-day period, the event brought together hundreds of attendees from across the globe to share valuable insight ...

Readmore

Matthew Davis Named Field Service Manager at Weir

4 DAYS AGO

Weir Valves & Controls USA (WVC USA) has appointed Matthew Davis to the position of field service manager. In his new role, Davis will be responsible for managing the WVC USA Field Service crew and organizing WVC Service jobs for power plants worldwide.

Davis joins WVC USA with over 20 years of ex...

Readmore

Strong Momentum for M&A Activity in the Chemical Industry

-1 DAYS AGO

Global chemical mergers and acquisitions (M&A) activity in 2018 is expected to remain strong, as higher valuations continue to be mitigated by improving global economic conditions, continued inexpensive financing, and an appetite amongst industry participants for growth and transformative M&...

Readmore

TransCanada Turns Attention to Natural Gas System

3 DAYS AGO

TransCanada Corp. will move forward with a $1.9 billion expansion of its NGTL System to connect incremental supply and expand basin export capacity by one billion cubic feet of natural gas per day at the interconnection with its Canadian Mainline. NGTL expects to begin construction in 2019.

The increme...

Readmore

Construction Starts in 2017 Decline 7%

-1 DAYS AGO

Many of the leading U.S. metropolitan areas for commercial and multifamily construction starts showed reduced activity in 2017 compared to levels reported during 2016, according to Dodge Data & Analytics. Of the top ten markets ranked by the dollar amount of construction starts, seven registered...

Readmore

Philly Fed: Manufacturing Activity Expanded Solidly

2 HOURS AGO

The index for manufacturing activity in the Philadelphia Federal Reserve region increased 4 points in February to a reading of 25.8. The index has stayed within a relatively narrow range over the past nine months. Nearly 41% of the firms indicated increases in activity this month, while 15% reported...

Readmore

Advertisement

Materials Selection for Deepwater Gate Valves

spr11_deepsea_fig1Figure 1. A typical subsea installation showing valves, manifolds and jumpers

With the discovery of oil and gas in water depths thousands of feet below the surface, selection of valves is more important, difficult and complicated. Gate valves, which are often used in subsea applications, are available today in a wide selection of materials, but choosing them requires knowledge of new challenges and established standards.

In years past, the materials used to handle corrosive service in the sea faced mainly the challenges of hydrogen sulfide (H2S), carbon dioxide (CO2) and chlorides. With deepwater well drilling, the newer subsea systems being drilled also need to handle chemicals that will minimize paraffin, asphaltene, hydrates and scale formation as well as provide corrosion inhibitions. These chemicals, however, have adverse effects on metallic and non-metallic materials, and the problem is compounded when materials have to handle produced fluids, annular fluids and the injected chemicals. Also, with subsea systems, the effects of hydrogen embrittlement from the cathodic protection system have to be taken into account. For this reason, choosing the materials to be used in gate valves for subsea is especially challenging.

WHAT GOES INTO THE CHOICE

In selection of materials for subsea gate valves, the following must be considered:

  • Composition of produced fluids in contact with valves and internal parts—all wetted parts
  • Service temperatures
  • Operating pressure ranges
  • Galvanic effects from contact of dissimilar materials
  • Crevice corrosion at seal and flange faces
  • Temperature and chemical resistance for non-metallic materials
  • Cathodic protection (CP) on materials
  • Effectiveness of coatings on materials
  • Weldability for weld overlay
  • Material availability and cost
  • Compatibility of materials with injected fluids

 


VALVE BODY MATERIALS

Several organizations provide recommendations for the selection of materials for valves. These include the National Association for Corrosion Engineers (NACE) and American Petroleum Institute (API).

NACE only covers metallic material requirements for resistance to sulfide stress cracking (SCC) for oilfield equipment, which is not intended to include design specification. (Other forms of corrosion and other modes of failure are outside the scope of NACE’s standard and should be considered in design and operation of equipment.) NACE also has requirements for low-alloy materials exposed to sour service. For example, the organization requires that hardness for alloy materials be limited to HRC 22 maximum. Nickel content is limited to 1% maximum, and NACE also has proposed heat treatment such as normalized, normalized and temper, and quench and temper.

API has several standards, such a specification 17D “Specification for Subsea Wellhead and Christmas Tree Equipment,” which uses the material requirements of API 6A.

Specification API 6A covers a number of specific areas for subsea valves, including strength, impact and quality testing. Strength level depends on the pressure rating of the equipment. For example, for flanged end connections, equipment used to pressure levels of 10,000 psi must be manufactured from material having a minimum yield strength of 60,000 psi. Equipment exceeding 10,000 psi pressure must be designed using equipment with specified yield strength of 75,000 psi (refer to API 6A Table 5.2).

Once the fluids that will be produced have been determined, valve selection can occur. Besides the challenges the fluids will produce, as well as the temperatures and pressures involved, the service conditions must also be considered. This includes how long the equipment might be exposed to seawater. Alloy steel will handle most benign conditions, including low CO2 for short periods of time, but even short seawater exposure can cause corrosion of critical components. This is especially true if seawater is trapped in those components and cannot be flushed out in a timely manner. Even with benign conditions, there is need for long-term life—in many cases over 25 years.

Valves as specified using API and NACE standards to handle strength and corrosive requirements can be grouped as follows with typical materials and applicable service conditions:


Stainless-steel Valves
spr11_deepsea_fig2Figure 2. Typical subsea tree assembly

When environments call for stainless steels such as 410 and F6NM, they may have similar corrosion resistance in oilfield environments; however, they have significant differences in weldability. Stainless 410 in the wrought and welded condition has lower impact toughness than F6NM. Welds of 410 have lower toughness, and depending on the operation, F6NM is often used if there is a risk of Joule Thomson effect (the temperature change of a gas or liquid forced through a valve or porous plug while kept insulated so that no heat is exchanged with the environment) at the wellhead. Even though stainless steels such as 410 and F6NM have good corrosion resistance and can handle mild corrosive conditions, weld overlay of critical sealing surfaces with corrosion-resistant alloy (CRA) is used to minimize pitting.


Duplex Stainless-steel Components

Although duplex stainless steels have good corrosion resistance in most environments, the use of these materials is limited for wellhead equipment because of the danger associated with sigma formation during heat treatment in large section thicknesses. Improper heat treatment not only results in poor corrosion resistance, but also poor toughness property. Duplex stainless steels require a satisfactory balance between ferrite and austenite both in the wrought and welded structures. Super duplex is specified where the Pitting Resistance Index (PRE) exceeds 40, whereas duplex is specified for thin components.

  • Latest Post

  • Popular

  • Links

  • Events

Advertisement
BUYERS GUIDE 300x220

Looking for a career in the Valve Industry?

ValveCareers Horiz

To learn more, watch the videos below or visit ValveCareers.com a special initiative of the Valve Manufacturers Association