09302016Fri
Last updateFri, 30 Sep 2016 3pm

i

Caution: Horizontal Stem Installation Ahead

Caution: Horizontal Stem Installation Ahead

When it comes to linear valve installati...

The Critical Stem Nut: Who is Responsible for Maintenance?

The Critical Stem Nut: Who is Responsible for Maintenance?

One of the most important components of ...

An Alternative Basics Education: Valve Ed Comes to You!

An Alternative Basics Education: Valve Ed Comes to You!

For the first time in the seven-year his...

Give Your Flow Meter a Happy Home

Give Your Flow Meter a Happy Home

Increased emphasis on the need to improv...

The Weekly Report

New Products

  • ja-news-2
  • ja-news-3

Industry Headlines

U.S. Second Quarter GDP Growth Revised Up

Friday, 30 September 2016  |  Chris Guy

Real GDP in the U.S. increased at an annual rate of 1.4% in the second quarter of 2016, up from 1.1% in the last estimate, according to the Department...

Readmore

Loading...
Advertisement
i

Industry Headlines

Siemens Industry Partners for Self-Funded Efficiency Project

19 HOURS AGO

Montgomery County, TN has partnered with Siemens Industry Inc. to begin a nearly $5 million, self-funded efficiency project. The project will begin in late October and will be completed by fall of 2017.

Siemens has guaranteed the savings – including 2,473,263 kWh of electricity per year; 34,154 c...

Readmore

Wolseley Reports 2016 Full Year Results

2 DAYS AGO

Wolseley plc delivered an improvement in overall results for the fiscal year ending July 31, 2016, up 8.5% from last year. Revenue of $18.7 billion was 4.2% ahead at constant exchange rates and 2.4% ahead on a like-for-like basis. Price deflation, particularly in the U.S., reduced revenue by 1.5%. Imp...

Readmore

Propane Drove 2016 U.S. Petroleum Product Export Growth

17 HOURS AGO

In the first half of 2016, the U.S. exported 4.7 million barrels per day (b/d) of petroleum products—almost 10 times the crude oil export volume—an increase of 500,000 b/d over the first half of 2015. While U.S. exports of distillate and gasoline increased by 50,000 b/d and nearly 140,00...

Readmore

$900 Million Natural Gas Power Plant Planned for Ohio

17 HOURS AGO

EmberClear Corp. of Houston has announced plans for a new $900 million natural gas-fired electric power generation plant. The 1,000-MW Harrison Power Project will be built over 60-acres in Harrison County, OH. EmberClear said it will take 18 to 36 months to win approval of various state and federal ag...

Readmore

U.S. Second Quarter GDP Growth Revised Up

-1 DAYS AGO

Real GDP in the U.S. increased at an annual rate of 1.4% in the second quarter of 2016, up from 1.1% in the last estimate, according to the Department of Commerce. In the first quarter, real GDP increased 0.8%.

The most notable change from the last estimate to this one is that nonresidential fixed inve...

Readmore

Durable Goods Orders Unchanged in August

1 DAY AGO

New orders for manufactured durable goods in August were little changed at $226.9 billion, the U.S. Department of Commerce announced, following a 3.6% July increase. Economists were predicting a 1.5% decrease in August. Excluding transportation, new orders decreased 0.4%. Excluding defense, new orders...

Readmore

Materials Selection for Deepwater Gate Valves

spr11_deepsea_fig1Figure 1. A typical subsea installation showing valves, manifolds and jumpers

With the discovery of oil and gas in water depths thousands of feet below the surface, selection of valves is more important, difficult and complicated. Gate valves, which are often used in subsea applications, are available today in a wide selection of materials, but choosing them requires knowledge of new challenges and established standards.

In years past, the materials used to handle corrosive service in the sea faced mainly the challenges of hydrogen sulfide (H2S), carbon dioxide (CO2) and chlorides. With deepwater well drilling, the newer subsea systems being drilled also need to handle chemicals that will minimize paraffin, asphaltene, hydrates and scale formation as well as provide corrosion inhibitions. These chemicals, however, have adverse effects on metallic and non-metallic materials, and the problem is compounded when materials have to handle produced fluids, annular fluids and the injected chemicals. Also, with subsea systems, the effects of hydrogen embrittlement from the cathodic protection system have to be taken into account. For this reason, choosing the materials to be used in gate valves for subsea is especially challenging.

WHAT GOES INTO THE CHOICE

In selection of materials for subsea gate valves, the following must be considered:

  • Composition of produced fluids in contact with valves and internal parts—all wetted parts
  • Service temperatures
  • Operating pressure ranges
  • Galvanic effects from contact of dissimilar materials
  • Crevice corrosion at seal and flange faces
  • Temperature and chemical resistance for non-metallic materials
  • Cathodic protection (CP) on materials
  • Effectiveness of coatings on materials
  • Weldability for weld overlay
  • Material availability and cost
  • Compatibility of materials with injected fluids

 


VALVE BODY MATERIALS

Several organizations provide recommendations for the selection of materials for valves. These include the National Association for Corrosion Engineers (NACE) and American Petroleum Institute (API).

NACE only covers metallic material requirements for resistance to sulfide stress cracking (SCC) for oilfield equipment, which is not intended to include design specification. (Other forms of corrosion and other modes of failure are outside the scope of NACE’s standard and should be considered in design and operation of equipment.) NACE also has requirements for low-alloy materials exposed to sour service. For example, the organization requires that hardness for alloy materials be limited to HRC 22 maximum. Nickel content is limited to 1% maximum, and NACE also has proposed heat treatment such as normalized, normalized and temper, and quench and temper.

API has several standards, such a specification 17D “Specification for Subsea Wellhead and Christmas Tree Equipment,” which uses the material requirements of API 6A.

Specification API 6A covers a number of specific areas for subsea valves, including strength, impact and quality testing. Strength level depends on the pressure rating of the equipment. For example, for flanged end connections, equipment used to pressure levels of 10,000 psi must be manufactured from material having a minimum yield strength of 60,000 psi. Equipment exceeding 10,000 psi pressure must be designed using equipment with specified yield strength of 75,000 psi (refer to API 6A Table 5.2).

Once the fluids that will be produced have been determined, valve selection can occur. Besides the challenges the fluids will produce, as well as the temperatures and pressures involved, the service conditions must also be considered. This includes how long the equipment might be exposed to seawater. Alloy steel will handle most benign conditions, including low CO2 for short periods of time, but even short seawater exposure can cause corrosion of critical components. This is especially true if seawater is trapped in those components and cannot be flushed out in a timely manner. Even with benign conditions, there is need for long-term life—in many cases over 25 years.

Valves as specified using API and NACE standards to handle strength and corrosive requirements can be grouped as follows with typical materials and applicable service conditions:


Stainless-steel Valves
spr11_deepsea_fig2Figure 2. Typical subsea tree assembly

When environments call for stainless steels such as 410 and F6NM, they may have similar corrosion resistance in oilfield environments; however, they have significant differences in weldability. Stainless 410 in the wrought and welded condition has lower impact toughness than F6NM. Welds of 410 have lower toughness, and depending on the operation, F6NM is often used if there is a risk of Joule Thomson effect (the temperature change of a gas or liquid forced through a valve or porous plug while kept insulated so that no heat is exchanged with the environment) at the wellhead. Even though stainless steels such as 410 and F6NM have good corrosion resistance and can handle mild corrosive conditions, weld overlay of critical sealing surfaces with corrosion-resistant alloy (CRA) is used to minimize pitting.


Duplex Stainless-steel Components

Although duplex stainless steels have good corrosion resistance in most environments, the use of these materials is limited for wellhead equipment because of the danger associated with sigma formation during heat treatment in large section thicknesses. Improper heat treatment not only results in poor corrosion resistance, but also poor toughness property. Duplex stainless steels require a satisfactory balance between ferrite and austenite both in the wrought and welded structures. Super duplex is specified where the Pitting Resistance Index (PRE) exceeds 40, whereas duplex is specified for thin components.

  • Latest Post

  • Popular

  • Links

  • Events

Advertisement

Looking for a career in the Valve Industry?

ValveCareers Horiz

To learn more, watch the videos below or visit ValveCareers.com a special initiative of the Valve Manufacturers Association