Lightening the load of multi-material manufacturing with 3D printing

The rise of 3D printing transformed the manufacturing industry, enabling manufacturers to quickly and precisely create specialized parts for any application.


Facebook Share Icon LinkedIn Share Icon Twitter Share Icon Share by EMail icon Print Icon

The rise of 3D printing has transformed the manufacturing industry, enabling manufacturers to quickly and precisely create specialized parts for any application. As reported from the University of Pittsburgh, Swanson School of Engineering, soft robotics, flow actuators, electrical circuits and sensors all make use of these customizable 3D-printed parts and the list of applications continues to grow.

3D printing has enabled the production of components made of multiple materials, each with their own unique properties. However, the process—which typically includes changing out vats of liquid and cleaning the lines in the middle of production—causes slowdowns and increases costs. 

Research led by University of Pittsburgh engineers promises to streamline this process by using different wavelengths of light to create reactions that imbue one specialized material system with different properties, rather than changing out the material itself to achieve the same goal. The research recently received $500,000 in funding from the National Science Foundation (NSF) Future Manufacturing Seed Grant. 

“Existing multi-material manufacturing methods have to switch over the material in the middle of production, rotating between materials like resins and waxes to create a single component,” explained Xiayun Zhao, assistant professor of mechanical engineering and materials science, who is leading the project. “Instead, we’re advancing the use of a single resin vat that can replace that process by exhibiting different characteristics when cured with different wavelengths of light.”

Unlike the popular consumer 3D printers that melt a filament of solid material to print layers, the 3D printing that is used for manufacturing is more complex, using a liquid that is cured by light exposure using a laser as the layers are printed into place. Prior research has explored the use of wavelength selectivity to create distinct reactions that cure material for 3D printing in different ways. This project is the first systematic and comprehensive study to establish the chemistry theory in the practice of multi-material photopolymer 3D printing. 

“It’s traditionally very hard, but very useful, to use multiple materials within a single, complex, 3D shape,” said Sachin Velankar, professor of chemical engineering and co-principal investigator. “3D printing has made it more attainable, but it’s still difficult. By using two lasers of different wavelengths, we can bypass the slowest part of the process.” 


  • Success Through Supply Chain Collaboration

    With valve components sourced from numerous suppliers around the globe, valve, actuator and control manufacturers are faced with a significant number of challenges while attempting to meet the desired flow control at a competitive price.

  • A Beginner’s Guide to the Right Actuator (Consider the Valve!)

    A valve, in its most basic form, consists of a body and an internal moving component (closure element), which shuts off or restricts flow through the valve.

  • The Actuators That Drive Subsea Operations

    Subsea development includes different types of activities such as exploration, drilling, completion and production.Subsea manifolds are the arrangement of piping, valves, connections, structures and the foundation used in the subsea production system to receive, combine and distribute the hydrocarbon fluid